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A new space–time discontinuous Galerkin finite element method for the solution
of the Euler equations of gas dynamics in time-dependent flow domains is presented.
The discontinuous Galerkin discretization results in an efficient elementwise con-
servative upwind finite element method, which is particularly well suited for local
mesh refinement. The upwind scheme uses a formulation of the HLLC flux appli-
cable to moving meshes and several formulations for the stabilization operator to
ensure that monotone solutions around discontinuities are investigated. The non-
linear equations of the space–time discretization are solved using a multigrid accel-
erated pseudo-time-integration technique with an optimized Runge–Kutta method.
The linear stability of the pseudo-time-integration method is investigated for the lin-
ear advection equation. The numerical scheme is demonstrated with simulations of
the flow field in a shock tube, a channel with a bump, and an oscillating NACA 0012
airfoil. These simulations show that using the data at the superconvergence points,
the accuracy of the numerical discretization is O(h5/2) in space for smooth subsonic
flows, both on structured and on locally refined meshes, and that the space–time
adaptation can significantly improve the accuracy and efficiency of the numerical
method. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

This article discusses a new discontinuous Galerkin (DG) finite element method for the
adaptive solution of the unsteady Euler equations of gas dynamics in three-dimensional
time-dependent flow domains. The algorithm results in a second-order-accurate finite ele-
ment discretization on deforming meshes and accuracy can be improved using local mesh
refinement or h-type mesh adaptation. In the development of the numerical scheme the main
objectives to be satisfied are the obtaining of a conservative discretization on deforming
meshes, the accurate capturing of flow discontinuities using h-adaptation while maintaining
accuracy on locally refined meshes, and the achieving of good computational efficiency on
parallel computers. These requirements have been the main motivation for developing a
discontinuous Galerkin finite element method. The main feature of discontinuous Galerkin
methods is the use of basis functions which are discontinuous across element faces. This
results in a finite element discretization with a very compact stencil, which can be combined
well with h-adaptation. These properties are important for many problems and the main
reason why discontinuous Galerkin methods currently are receiving significant attention.

Discontinuous Galerkin methods can be divided into two main classes, namely, discretiza-
tions with basis functions which are discontinuous either in space or in time. The first class
of DG methods, in combination with a TVD Runge–Kutta time integration method, has
been thoroughly investigated by Cockburn and co-workers. Detailed surveys can be found
in [12, 13]. The second class of DG methods uses discontinuous basis functions in time
and a streamline upwind Galerkin or Galerkin least-squares discretization in space. Both
classes of discontinuous Galerkin methods are also extensively discussed in Barth [2] and
Schwab [25].

The separation between space and time becomes cumbersome for time-dependent domain
boundaries, which require the mesh to follow the boundary movement. We will therefore
not separate space and time but consider the Euler equations directly in four dimensional
space and use basis functions in the finite element discretization which are discontinuous
across element faces, both in space and time. We refer to this technique as the space–time
discontinuous Galerkin finite element method. The space–time DG method provides op-
timal efficiency for adapting and deforming the mesh while maintaining a conservative
scheme which does not require interpolation of data after mesh refinement or deformation.
The space–time DG method presented in this article is an extension of our research on a so-
lution adaptive discontinuous Galerkin finite element method for steady three-dimensional
inviscid compressible flows [31]. This article discusses the general formulation of the space–
time DG method for the adaptive solution of the Euler equations in time-dependent flow
domains. Important improvements in the computational efficiency are discussed in van der
Ven and van der Vegt [34], where we present and analyze a new integration technique for
the element face and volume integrals for discontinuous Galerkin discretizations. There we
also demonstrate the maturity of the space–time DG discretization with three-dimensional
aerodynamic applications, such as a deforming wing in transonic flow.

The combined use of space and time discontinuous basis functions in a discontinuous
Galerkin method has been proposed by Jaffre et al. [19], who theoretically analyzed this
technique for multidimensional scalar conservation laws on nondeforming meshes (see also
Cockburn and Gremaud [8]). Until now, however, the use of space–time discontinuous basis
functions in DG methods has not been fully explored for nonlinear hyperbolic systems of
partial differential equations, such as the Euler equations of gas dynamics. An initial study
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was conducted by Lowrie et al. [22]. Their formulation results in a staggered space–time
mesh, which is quite different from the DG discretization presented in this article, and does
not easily extend to local mesh refinement, which is important for many applications.

In order to make the space–time DG method an accurate and efficient technique for the
solution of the Euler equations of gas dynamics we had to deal with a number of issues.
First, we will extensively discuss the weak formulation of the space–time discontinuous
Galerkin finite element method using the arbitrary Lagrangian Eulerian (ALE) approach.
This technique decouples the grid motion from the motion of the fluid particles and is widely
used in fluid-structure interaction problems and ideally suited for deforming meshes. The
discontinuous Galerkin discretization which we present automatically satisfies the geomet-
ric conservation law, which states that a uniform flow field should not be influenced by the
grid motion, since the element face and volume integrals are calculated with sufficiently
accurate quadrature rules. This problem was analyzed in detail by Lesoinne and Farhat [21]
and is an essential condition for obtaining at least first-order accuracy in time, as was proven
by Guillard and Farhat [17].

The space–time discontinuous Galerkin discretization results for each element in a cou-
pled system of nonlinear equations. We will present and analyze a pseudo-time-integration
method with multigrid acceleration which can efficiently solve these equations. In this tech-
nique the nonlinear equations of the DG discretization are augmented with a pseudo-time
and marched to steady state in pseudo-time. The pseudo-time integration is significantly
improved by optimizing the Runge–Kutta time integration method. The use of a multigrid
technique for a DG discretization of hyperbolic partial differential equations is new and
required a significant development effort. The proposed algorithm works well on locally
refined meshes and maintains the local structure of a DG discretization, which allows a
straightforward parallelization of the method.

Since the Euler equations of gas dynamics are hyperbolic and develop discontinuities in
finite time it is important to ensure monotone solutions around discontinuities. In the TVD
Runge–Kutta discontinuous Galerkin method this is accomplished by using a slope limiter
(for a survey, see Cockburn [12]). In our earlier work we also used this limiter [31, 32], but
the limiter in a DG method prevents convergence to steady state and also has a negative effect
on the numerical accuracy. In this article we will discuss the use of a stabilization operator
instead of a slope limiter to maintain monotone solutions. This technique significantly
improved the accuracy and convergence to steady state of the pseudo-time integration.

The DG discretization combines well with local mesh refinement and this is considered
one of its main benefits. The question of whether the DG discretization of the Euler equations
maintains accuracy on nonsmooth meshes has, however, not been addressed until now. This
has only been done for target functionals of the data, such as lift and drag on an airfoil
(for a survey, see Giles and Süli [15]), but this does not provide a global error estimate for
the solution. In this article we will investigate this issue with a number of mesh refinement
studies on uniform and adapted meshes.

The outline of the article is as follows. After some preliminaries we discuss in Section 3
the definition of the space–time discontinuous Galerkin discretization. First, the ALE weak
formulation is discussed, followed by a derivation of the nonlinear equations for the DG
expansion coefficients. Next, a definition of the HLLC flux suitable for moving boundaries
is given and the stabilization operator necessary to ensure monotone solutions around dis-
continuities is discussed. In Section 4 the multigrid accelerated pseudo-time-integration
method for the solution of the nonlinear DG equations is presented and its stability is



A NEW DG FINITE ELEMENT METHOD 549

analyzed. The mesh adaptation is discussed in Section 5 and extensive results that demon-
strate and validate the space–time DG method are presented in Section 6.

2. SPACE–TIME FORMULATION OF THE EULER EQUATIONS OF GAS DYNAMICS

We consider the Euler equations of gas dynamics in a time-dependent flow domain. Since
the flow domain boundary is moving and deforming in time we do not make an explicit
separation between the space and time variables and consider the Euler equations directly in
R

4. Let E ⊂ R
4 be an open domain. A point x ∈ R

4 has coordinates (x1, . . . , x4), but we will
also frequently use the notation (x̄, t) ∈ R

4, with x̄ = (x1, x2, x3) ∈ R
3 being the position

vector at time t and t = x4 representing time. The flow domain �(t) at time t is defined
as �(t) := {x̄ ∈ R

3 | (x̄, t) ∈ E}, with t0 and T the initial and final time of the evolution
of the flow domain. The space–time domain boundary ∂E consists of the hypersurfaces
�(t0) := {x ∈ ∂E | x4 = t0}, �(T ) := {x ∈ ∂E | x4 = T }, andQ := {x ∈ ∂E | t0 < x4 < T }.

Let F : R
5 → R

5×4 denote the flux tensor, which is defined as

F =




�u1 �u2 �u3 �

�u2
1 + p �u1u2 �u1u3 �u1

�u1u2 �u2
2 + p �u2u3 �u2

�u1u3 �u2u3 �u2
3 + p �u3

(� E + p)u1 (� E + p)u2 (� E + p)u3 � E




,

with � , p, and E the density, pressure, and specific total energy, respectively, and ui the
velocity components in the Cartesian coordinate directions xi , i ∈ {1, 2, 3} of the velocity
vector u : E → R

3. Let the vector U : E → R
5 denote the conservative flow variables with

components:

Ui = Fi4.

Then the Euler equations of gas dynamics are defined as

div F(U (x)) = 0, x ∈ E, (1)

together with the initial and boundary conditions:

U (x) = U0(x), x ∈ �(t0),

U (x) = B(U, Uw), x ∈ Q.

Here U0 : �(t0) → R
5 denotes the initial flow field, B : R

5 × R
5 → R

5 the boundary op-
erator, and Uw : Q → R

5 the prescribed boundary flow field data. The divergence of a
second-order tensor is defined as div F = ∂Fi j

∂x j
, and the summation index is used on re-

peated indices in this article. The Euler equations are completed with the equation of state
for a caloric perfect gas: p = (� − 1)� (E − 1

2 ui ui ), with � the ratio of specific heats.
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3. SPACE–TIME DISCONTINUOUS GALERKIN DISCRETIZATION

OF THE EULER EQUATIONS

3.1. Geometry Definition of Space–Time Elements

Consider a partitioning t0 < t1 < · · · < T of the time interval (t0, T ) and define the time
interval In as In = (tn, tn+1). The space–time domain E ⊂ R

4 is split into a finite number
of space–time slabs: {x ∈ E | x4 ∈ In}. The evolution of the flow domain during the time
interval In is represented by the mapping 	n

t , which is defined as

	n
t : �(tn) → �(t) : x̄ �→ 	n

t (x̄), t ∈ In. (2)

The mapping 	n
t is assumed to be sufficiently smooth, orientation preserving, and invertible

in each time interval In but can be different in different time intervals. This makes it possible
to generate a new grid when elements become too severely distorted during the dynamic
mesh movement. At the time level tn we use hexahedral elements K to define the tessellation
T̄ n

h ; i.e.,

T̄ n
h :=

{
K n

j

∣∣∣∣∣
Nn⋃
j=1

K̄ n
j = �̄h(tn) and K n

j ∩ K n
j ′ = ∅ if j �= j ′, 1 ≤ j, j ′ ≤ Nn

}
,

such that �h(tn) → �(tn) as h → 0, with h the radius of the smallest sphere completely
containing each element K ∈ T̄ n

h , and Nn the total number of hexahedra in �h(tn). Each
element K n ∈ T̄ n

h is related to the master element K̂ = (−1, 1)3 through the mapping Fn
K ;

i.e.,

Fn
K : K̂ → K n : �̄ �→ x̄ =

8∑
i=1

xi (K n)�i (�̄ ),

with xi (K n) ∈ R
3, 1 ≤ i ≤ 8, the spatial coordinates of the vertices of the hexahedron K n

at time tn and �i (�̄ ) the standard trilinear finite element shape functions for hexahedra, with
�̄ = (�1, �2, �3) ∈ K̂ . The elements K n+1 are now obtained by moving the vertices of each
hexahedron K n ∈ T̄ n

h with the mapping 	n
t to their new position at time t = tn+1, and we

can define the mapping:

Fn+1
K : K̂ → K n+1 : �̄ �→ x̄ =

8∑
i=1

	n
tn+1

(xi (K n)) �i (�̄ ).

The space–time elements are obtained by connecting the elements in �(tn) and �(tn+1) by
linear interpolation in time. This results in the parameterization of the space–time elements
Kn ,

Gn
K : K̂ → Kn : � �→ (x̄, t) =

(
1

2
(1 − �4)Fn

K (�̄ ) + 1

2
(1 + �4)Fn+1

K (�̄ ),

1

2
(tn + tn+1) + 1

2
(tn+1 − tn)�4

)
, (3)
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with � ∈ K̂ the computational coordinates in the master element K̂, which is defined as:
K̂ = (−1, 1)4. The space–time tessellation is now defined as

T n
h := {K = Gn

K (K̂)
∣∣ K ∈ T̄ n

h

}
.

We will also frequently use the notation K (t) for the element K at time t , which is defined
as K (t) = {x̄ ∈ R

3|(x̄, t) ∈ K}. The space–time elementKn is bounded by the hypersurfaces
K (t+

n ) = lim
�↓0

K (tn + �), K (t−
n+1) = lim

�↓0
K (tn+1 − �), and Qn = ∂Kn\(K (t+

n ) ∪ K (t−
n+1)).

This notation is used to indicate that the mesh can change discontinuously at the time
levels tn and tn+1.

The boundary faces of Kn can also be represented using the mapping (3). For 1 ≤ m ≤ 8
define the eight faces Sm of the space–time element K, with ∂K = ∪8

m=1Sm , by

S2m−1 = {G K (� ) | � ∈ K̂, �m = −1},
(4)

S2m = {G K (� ) | � ∈ K̂, �m = 1}, 1 ≤ m ≤ 4.

Note that Qn = ∪6
m=1Sm , K (t+

n ) = S7, and K (t−
n+1) = S8. The reader is referred to Fig. 1

for a two-dimensional illustration of the elements and mappings.

Remark. The tessellation T n
h does not impose a limitation on the number of elements

which can connect to a face of an element. This is important because during the simulations
the computational mesh will be adapted by subdividing elements in space and/or time in
regions where more mesh resolution is required.

Remark. Since we use a trilinear representation of the elements in space, this implies that
we use a bilinear representation of the geometry at slip flow boundaries. In an interesting
article, Bassi and Rebay [1] concluded that a higher order representation of a slip flow
boundary is mandatory in order to avoid strong numerical boundary layers and to obtain
convergence. Recently, van der Vegt and van der Ven [33] showed that under grid refinement
the numerical boundary layer diminishes for hexahedral-type elements. Since local mesh
refinement already is an integral part of our algorithm, we use this technique to remove the
numerical boundary layer at slip flow boundaries and it is not necessary to use a higher-
order-accurate boundary representation.

t

x

∆

∆

t

x

∆
∆t−

Fn
K

GK
1

1ξ

ξ

[−1,1]
2

S
n

S
2

t4

4

K
n+1

K

K
n

x
n=

n

FIG. 1. Illustration of the geometry of two-dimensional space–time elements in both computational and
physical space. Notations in the text.
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3.2. Space–Time Discontinuous Galerkin Finite Element Approximation

3.2.1. Weak Formulation of the Euler Equations

In order to ensure that the different forms of the weak formulation of the Euler equations
of gas dynamics, which are discussed in this section, are well defined we introduce the
broken space V (T n

h ); i.e.,

V
(
T n

h

)
:= {U : T n

h → R
5
∣∣ (grad U 1)T : F(U 2)|Kn

j
∈ L1

(
Kn

j

)
,

((grad U 2)T · �(U 1)) : grad U 1|Kn
j
∈ L1

(
Kn

j

)
,

�−(U 1) · (nT
K F(�−(U 2)) + nT

K F(�+(U 3))
) ∈ L1

(
∂Kn

j

)
,

∀(U 1, U 2, U 3) ∈ V
(
T n

h

)
, ∀Kn

j ∈ T n
h

}
,

with L1 the space of Lebesgue integrable functions, �±(U ) = lim�↓0 U (x ± �nK) the traces
of U at ∂K, nK ∈ R4 the unit outward normal vector at ∂K, � : R

5 → R
4×4 the artificial

viscosity matrix, and superscript T the transposition of a vector. We will also frequently
use the notation U± to denote �±(U ). The gradient operator grad : R

5 → R
4×5 is defined

as (grad U )i j = ∂U j

∂xi
and the symbol : represents the dyadic product of two second-order

tensors and is defined for A, B ∈ R
n×m as A : B = Ai jBi j .

The discontinuous Galerkin finite element discretization is obtained by approximating
the test and trial functions in each element K ∈ T n

h with polynomial expansions which are
discontinuous across element faces, both in space and time. First, in the master element K̂
the basis functions �̂m : K̂ → R are defined which are linear in computational space:

�̂m(� ) = 1, m = 0,

= �m, m = 1, . . . , 4.

Next, the basis functions �m : K → R are constructed through the parameterization G K :

�m = �̂m ◦ G−1
K , m = 0, . . . , 4.

We also introduce the basis functions �m : K → R, which are defined as

�m(x̄, t) = 1, m = 0,

= �m(x̄, t) − 1

|K j (t
−
n+1)|

∫
K j (t

−
n+1)

�m(x̄, t−
n+1) d K , m = 1, . . . , 4,

(5)

since this will result in a splitting of the test and trial functions into an element mean at time
tn+1 and a fluctuating part. This property will be beneficial in the definition of the stabilization
operator and the multigrid convergence acceleration, discussed in Sections 3.5 and 4.

The finite element space V 1
h (T n

h ) is now defined as

V 1
h

(
T n

h

)
:= {Uh | Uh |K ∈ (P1(K))5} ⊂ V

(
T n

h

)
,

with the polynomial space P1(K) = span{�m, m = 0, . . . , 4}. The trial functionsUh : T n
h →

R
5 are defined in each element K ∈ T n

h as

Uh(x̄, t)|K ≡ P(U (x̄, t)|K) =
4∑

m=0

Ûm(K)�m(x̄, t), (6)

withP : R
5 → V 1

h (T n
h) the projection operator on the space V 1

h and Ûm ∈ R
5 the expansion
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coefficients. The test functions Wh : T n
h → R

5 are defined analogously, only with Ûm re-
placed by Ŵm . The weak formulation for the Euler equations of an inviscid compressible
gas can now be formulated as follows.

Find a Uh ∈ V 1
h (T n

h ) that for all Wh ∈ V 1
h (T n

h ) satisfies the variational equation

NT∑
n=0

Nn∑
j=1

{∫
Kn

j

Wh · divF(Uh) dK +
∫
Kn

j

((grad Wh)T · �(Uh)) : grad Uh dK
}

= 0, (7)

where NT + 1 is the total number of space–time slabs and Nn the number of elements in
the tessellation T n

h . The second contribution in (7) is the stabilization operator and it is
added to the weak formulation to prevent numerical oscillations around discontinuities and
in regions with sharp gradients (for more details see Section 3.5).

3.2.2. Transformation of the Space–Time Weak Formulation into ALE Form

The weak formulation (7) can be transformed into an integrated-by-parts form using
Gauss’ theorem. This has as the main benefit that it does not result in loss of conservation
under inexact quadrature (see, e.g., Hansbo [18]). This approach is, for instance, followed
by Shakib et al. [26]. It is, however, possible to establish a relation between the arbitrary
Lagrangian Eulerian (ALE) formulation, commonly used on moving and deforming meshes,
and the space–time approach. This can be done either directly for the partial differential
equations, as presented by Masud and Hughes [23], or for the weak formulation using
Stokes’ theorem (see Bottasso [6]). In this section we will establish the relation between
the space–time and ALE formulation in a way which does not require the use of differential
forms and which gives more insight into the origin of the various contributions.

If we introduce

Wh · divF(Uh) = div
(
W T

h F(Uh)
)− (grad Wh)T : F(Uh) (8)

into the weak formulation (7) and apply Gauss’ theorem to the contribution resulting from
the first term on the right-hand side of (8), then we obtain∫

Kn
j

div
(
W T

h F(Uh)
)

dK =
∫

∂Kn
j

nK · ((W −
h )TF(U−

h )) d(∂K), (9)

where nK is the unit outward normal vector at the boundary ∂Kn . The ALE formulation can
now be obtained by calculating the normal vector nK.

Given the parameterization (x̄, t) = Gn
K (� ) for the space–time element, the normal vec-

tor nK at the boundary surface components S2i−1 and S2i , 1 ≤ i ≤ 4, defined in (4), is
orthogonal to the tangential vectors ti1 , ti2 , and ti3 , with the indices {i1, i2, i3} ⊂ {1, . . . , 4}
complementary to the index {i}. The tangential vectors are defined as t j = ∂Gn

K
∂� j

and are
equal to (cf. (3))

t j =

 1

2 (1 − �4) ∂ Fn
K (�̄ )

∂� j
+ 1

2 (1 + �4) ∂ Fn+1
K (�̄ )
∂� j

0


 , j = 1, 2, 3,

t4 = 1

2

(
Fn+1

K (�̄ ) − Fn
K (�̄ )

tn+1 − tn

)
= 1

2

(

x̄

t

)
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(also see Fig. 1). The normal vectors at S7 and S8 are simply (0, 0, 0, −1) and (0, 0, 0, 1),
respectively; hence the boundary integrals over the surfaces S7 and S8 are equal to

8∑
m=7

∫
Sm

nK · ((W −
h )TF(U−

h )) dS =
∫

K j (t
−
n+1)

W −
h · U−

h dS −
∫

K j (t
+
n )

W −
h · U−

h dS, (10)

where we used the relations U−
h =Fi4(U−

h ), S7 = K j (t+
n ), and S8 = K j (t

−
n+1).

For the remaining boundary terms remember that for each �4 ∈ (−1, 1), the element K (t),
such that (K (t), �4) = Gn

K (�̄ , �4), is the space element defined by the interpolated vertices
of the elements K (t+

n ) and K (t−
n+1). Let n̄i

K(x̄, t) ∈ R
3 (1 ≤ i ≤ 6) be the space part of the

normal vector at the boundary parts Si ⊂Qn
j . By definition, n̄2m−1

K and n̄2m
K (1 ≤ m ≤ 3) are

perpendicular to the tangential vectors tik = 1
2 (1 − �4) ∂ Fn

K
∂�ik

+ 1
2 (1 + �4) ∂ Fn+1

K
∂�ik

, with k = 1 or
2, such that {i1, i2, m} = {1, 2, 3}. Hence, the vectors (n̄i

K,	) ∈ R
4 are orthogonal to the

tangential vectors tik , if and only if the conditions

1

2

x̄ · n̄i

K + 1

2
	
t = 0

are satisfied. The space–time normal vector ni
K at Si (1 ≤ i ≤ 6) therefore is equal to

ni
K = (n̄i

K, −v · n̄i
K
)
,

with the grid velocity v ∈ R
3 given by the relation v = 
x̄/
t . Since the space–time normal

vector nK has length one, the space normal vector n̄K has a length |n̄K| = 1/
√

1 + v · v. The
boundary flux integral over Si (1 ≤ i ≤ 6) is now equal to

6∑
i=1

∫
Si

nK · ((W −
h )TF(U−

h )) dS =
∫
Qn

j

[n̄K · ((W −
h )T F̄(U−

h )) − n̄K · v(W −
h · U−

h ))] dQ,

(11)

where the flux tensor F̄ : R
5 → R

5×3 has components F̄i j =Fi j with 1 ≤ j ≤ 3. If we replace
the right-hand side of (9) with the sum of (10) and (11), using ∂Kn = ∪8

i=1 Si , and introduce
this relation into (7), we obtain the weak formulation for the Euler equations of gas dynamics
in ALE form.

Find a Uh ∈ V 1
h (T n

h ) such that for all Wh ∈ V 1
h (T n

h ), the following variational equation is
satisfied:

NT∑
n=0

Nn∑
j=1

{
−
∫
Kn

j

(grad Wh)T : F(Uh) dK +
∫

K j (t
−
n+1)

W −
h · U−

h d K

−
∫

K j (t
+
n )

W −
h · U−

h d K +
∫
Qn

j

W −
h · (F̄(U−

h )n̄K − n̄K · vU−
h ) dQ

+
∫
Kn

j

((grad Wh)T · D(Uh)) : grad Uh dK
}

= 0. (12)
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3.2.3. Introduction of Numerical Flux

In the summation over the space–time elements, the integrals over the internal faces of
Qn , K (tn), and K (tn+1) in the weak formulation (12) are counted twice, since two elements
are connected to each side of the faces. (In case of mesh refinement this applies to subsets
of these faces.) This results in a multivalued flux tensor at internal faces, since in general
U−

h �= U+
h in the discontinuous Galerkin discretization, and this requires special care. If we

use the fact that the normal flux through the boundary faces must be continuous, almost
everywhere, to ensure conservation, then we obtain the relations∫

K j (t
+
n )∪K j (t

−
n+1)

W −
h · U−

h d K =
∫

K j (t
+
n )∪K j (t

−
n+1)

W −
h · U+

h d K , ∀Wh ∈ V 1
h

(
T n

h

)
,

(13)∫
Qn

j

W −
h · (F̃(U−

h )n̄K) dQ =
∫
Qn

j

W −
h · (F̃(U+

h )n̄K) dQ, ∀Wh ∈ V 1
h

(
T n

h

)
,

with U+
h the trace of Uh at ∂Kn

j of elements connected to Kn
j . The generalized flux tensor

F̃ : R
5 → R

5×3 is defined as

F̃(U ) = F̄(U ) − v ⊗ U,

where v ⊗ U = viU j . The integrals over internal faces K j (t+
n ) then transform into

Nn∑
j=1

∫
K j (t

+
n )

W −
h · U−

h d K =
Nn∑
j=1

∫
K j (t

+
n )

W −
h · 1

2
(U−

h + U+
h ) d K ,

with a similar relation for K j (t
−
n+1). The multivalued time flux is now replaced with a

numerical flux HT , which, in order to ensure the causality of the time flux, is defined as

HT (U−
h , U+

h ) = U+
h , at K j (t

+
n ),

= U−
h , at K j (t

−
n+1).

The numerical flux HT can also be used at the boundary faces K j (t
+
0 ), where the external

trace is provided by the initial condition at t = t0. The numerical flux HT makes it possible
to drop the summation over the space–time slabs in the weak formulation (12), since each
space–time slab only depends on the previous space–time slab. The introduction of the
time flux is an alternative to the weak coupling between space–time slabs generally used in
time-discontinuous Galerkin methods and results in a uniform treatment of the space–time
flux in the DG discretization. Using (14), the integrals over Qn

j in (12) can be transformed
into

Nn∑
j=1

∫
Qn

j

W −
h · (F̃(U−

h )n̄K) dQ =
Nn∑
j=1

∫
Qn

j

W −
h · 1

2
(F̃(U−

h )n̄K + F̃(U+
h )n̄K) dQ. (14)

The representation of the flux in (14) as the average between the left and right states at
the element face results in a central discretization which suffers from numerical oscilla-
tions around discontinuities. Monotone solutions are obtained by adding the stabilization
operator and introducing a Godunov-type upwind flux. The use of an upwind flux fits
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very well into a discontinuous Galerkin discretization, since the states U−
h and U+

h can be
considered the left and right states in a Riemann problem. We replace therefore the flux
1
2 (F̃(U−

h (x̄, t))n̄K + F̃(U+
h (x̄, t))n̄K) at the element faces Qn

j in the time interval [t, t + 
t)
with a monotone upwind flux H (U−

h , U+
h ), which is consistent, H (Uh, Uh) = F̃(Uh)n̄K, and

conservative, H (U−
h , U+

h ) = −H (U+
h , U−

h ). At external boundary faces we apply the same
procedure, but at these faces the external state U+

h is controlled by the boundary operator:
U+

h =B(U−
h , Uw).

Any of the well-known (approximate) Riemann solvers, such as those from Godunov,
Roe, Lax–Friedrichs, or Osher (for a survey, see Toro [30]), can be used as upwind numerical
flux. In earlier work [31], we used the Osher flux because of its good accuracy and nice
mathematical foundation, but the Osher flux is computationally expensive and is replaced
with the HLLC flux. The HLLC flux is introduced by Toro et al. [29] and further analyzed
by Batten et al. [3, 5]. The HLLC flux provides solutions of at least the same quality as
the Osher flux but at less than one quarter of the computational cost. The definition of
the HLLC flux for moving interfaces is provided in Section 3.4. An important benefit of
using an upwind numerical flux is that this ensures nearly monotone solutions without a
stabilization operator. A relatively simple stabilization operator in comparison with, for
instance, the one used by Shakib et al. [26] for the Galerkin least-squares finite element
method then is sufficient to obtain monotone solutions. The weak formulation for the
space–time discontinuous Galerkin finite element discretization of the Euler equations of
gas dynamics now is equal to the following:

Find a Uh ∈ V 1
h (T n

h ) such that for all Wh ∈ V 1
h (T n

h ), the following variational equation is
satisfied:

Nn∑
j=1

{
−
∫
Kn

j

(grad Wh)T :F(Uh) dK +
∫

K j (t
−
n+1)

W −
h · U−

h d K

−
∫

K j (t
+
n )

W −
h · U+

h d K +
∫
Qn

j

W −
h · H (U−

h , U+
h ) dQ

+
∫
Kn

j

((grad Wh)T · D(Uh)) : grad Uh dK
}

= 0. (15)

3.3. Equations for the Flow Field Expansion Coefficients

An important element in the numerical discretization is the splitting of the test and trial
functions into an element mean Ūh : T n

h → R
5 at the time level tn+1 and a fluctuating part

Ũh : T n
h → R

5; i.e.,

Uh(x̄, t) = Ūh(K j (t
−
n+1)) + Ũ h(x̄, t), ∀(x̄, t) ∈Kn

j , (16)

with

Ū h(K j (t
−
n+1)) = Û0, (17)∫

K j (t
−
n+1)

Ũ h(x̄, t) d K = 0. (18)
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The flow field can now be represented as

Uh(x̄, t) = Ū h(K j (t
−
n+1)) +

4∑
m=1

Ûm
(
Kn

j

)
�m(x̄, t), ∀(x̄, t) ∈Kn

j .

This splitting is a direct consequence of the fact that the basis functions �m(x̄, t) are con-
structed such that ∫

K j (t
−
n+1)

�m(x̄, t−
n+1) d K = 0, m ≥ 1, (19)

and it has several advantages. In the first place, the structure of the space–time discontinuous
Galerkin discretization becomes more clear, because the equations for the element mean
are identical to a finite volume discretization. A second advantage of the splitting is that it
makes it easier to define the stabilization operator and the multigrid convergence acceleration
procedure. The stabilization operator does not act on the element mean, but only on the
fluctuating part. Any adjustment to the element fluctuations due to the stabilization operator
will therefore not affect the element mean and will preserve a conservative scheme. The
multigrid procedure also benefits from this splitting, since it only uses the equations for
the element mean at the coarse grid levels. This results in a significant simplification of the
multigrid algorithm while maintaining good multigrid performance.

If we introduce the polynomial expansions (6), for Uh and Wh into the weak formulation of
the Euler equations (15) and use (16)–(19) and the fact that the coefficients Ŵ are arbitrary,
then the following set of equations for the element mean Ū i (K j (t

−
n+1)), 1 ≤ i ≤ 5, is obtained:

|K j (t
−
n+1)|Ū i (K j (t

−
n+1)) −

∫
K j (t

+
n )

Uh,i (x̄, t−
n ) d K +

∫
Qn

j

Hi (U
−
h , U+

h ) dQ = 0. (20)

The coefficients for the fluctuating part of the flow field Ûmi (Kn
j ) with m = 1, . . . , 4, are

equal to

4∑
m=1

Û mi
(
Kn

j

)(−
∫
Kn

j

∂� l(x̄, t)

∂t
�m(x̄, t) dK +

∫
K j (t

−
n+1)

� l(x̄, t−
n+1)�m(x̄, t−

n+1) d K

)

−
∫

K j (t
+
n )

Uh,i (x̄, t−
n )� l(x̄, t+

n ) d K − Ū i (K j (t
−
n+1))

∫
Kn

j

∂� l(x̄, t)

∂t
dK

+
∫
Qn

j

� l(x̄, t)Hi (U
−
h , U+

h ) dQ −
∫
Kn

j

∂� l(x̄, t)

∂xk
F̄ik(Uh) dK

+
4∑

m=1

Û mi
(
Kn

j

) ∫
Kn

j

∂� l(x̄, t)

∂xk
Dkp(Uh)

∂�m(x̄, t)

∂x p
dK=0, l = 1, . . . , 4; i = 1, . . . , 5.

(21)

The computational mesh can be discontinuous at the interface between two space–time slabs.
This implies that more than one element in T n−1

h can connect to the element Kn
j ∈ T n

h . In
that case the polynomial representation of Uh(x̄, t−

n ) in the various elements in T n−1
h which
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connect to the element Kn
j must be used in the evaluation of the integrals

∫
K j (t

+
n ) Uh(x̄, t−

n )� l

(x̄, t+
n ) d K . This is discussed in Sections 5.1 and 5.2. The different contributions in (21) are

evaluated separately. Define the geometric coefficients A1, A2,A∈ R
5×5 as

A1
lm =

∫
Kn

j

∂� l(x̄, t)

∂t
�m(x̄, t) dK,

A2
lm =

∫
K j (t

−
n+1)

� l(x̄, t−
n+1)�m(x̄, t−

n+1) d K ,

Alm = −A1
lm + A2

lm,

and the coefficients B ∈ R
5×5, which couple the space–time slabs, as

Bil
(
U+

h |K j (t
+
n )

) =
∫

K j (t
+
n )

Uh,i (x̄, t−
n )� l(x̄, t+

n ) d K . (22)

The element face and volume flux contributions R1 ∈ R
5×5, R2 ∈ R

5×4 are defined as

R1
il

(
U−

h |Qn
j
, U+

h |Qn
j

) =
∫
Qn

j

� l(x̄, t)Hi (U
−
h , U+

h ) dQ, (23)

R2
il

(
Uh |Kn

j

) =
∫
Kn

j

∂� l(x̄, t)

∂xk
F̄ik(Uh) dK, (24)

and the integrals of the stabilization operator D ∈ R
4×4 are denoted as

Dlm
(
Uh |Kn

j
, U ∗

h |Kn
j

) =
∫
Kn

j

∂� l(x̄, t)

∂xk
Dkp

(
Uh |Kn

j
, U ∗

h |Kn
j

)∂�m(x̄, t)

∂x p
dK, (25)

with U ∗
h |Kn

j
the solution in the elements K∈ T n

h , which connect to the element Kn
j . The

evaluation of the flux and stabilization operator integrals is discussed in Sections 3.4 and
3.5, respectively. The system of nonlinear equations (21) for the expansion coefficients
Û mi (Kn

j ) can be expressed as

L(Û n, Û n−1) = 0, (26)

with Û n = Û mi (K),K∈ T n
h , 0 ≤ m ≤ 4, 1 ≤ i ≤ 5, and L : R

5×5 × R
5×5 → R

5×5 having
components in each space–time element:

Li0 = |K j (t
−
n+1)|Ū i (K j (t

−
n+1)) − Bi0

(
U+

h |K j (t
+
n )

)+ R1
i0

(
Uh |Kn

j
, U ∗

h |Kn
j

)
, (27)

Lil =
4∑

m=1

(
Alm

(
Kn

j

)+ Dlm
(
Uh |Kn

j
, U ∗

h |Kn
j

))
Û mi

(
Kn

j

)− Bil
(
Û+

h |K j (t
+
n )

)
− A1

l0Ū i (K j (t
−
n+1)) + R1

il

(
U−

h |Qn
j
, U+

h |Qn
j

)− R2
il

(
Uh |Kn

j

)
, l = 1, . . . , 4. (28)

The space–time discontinuous Galerkin discretization results in a set of nonlinear equations
(26) for the expansion coefficients Û n . This set of nonlinear equations is solved with a full
approximation storage (FAS) multigrid scheme, which is discussed in Section 4. Since the
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evaluation of the coupling terms B between space–time slabs is fairly complicated for gen-
eral meshes, it is also useful to consider the equations for continuous grid motion. In this
case these integrals are relatively simple; i.e.,

Bil
(
U+

h |K j (t
+
n )

) = BlmÛ mi
(
Kn−1

j

)
,

with

Blm =
∫

K j (tn )
� l(x̄, t+

n )�m(x̄, t−
n ) d K .

If we use the relations B00 = |K j (tn)| and Û 0i (Kn−1
j ) = Ū i (K j (t−

n )), then (27) is a standard
finite volume discretization for the element mean.

Remark. It would have been more convenient to define the element mean flow field for
the space–time element K instead of using the element mean flow field in K j (t

−
n+1)), but this

would not result in a decoupling of the equations for the element mean from the equations
for the fluctuations Ũ h due to the weak coupling between the different time slabs in the
weak formulation (15).

3.4. Flux Calculation

3.4.1. Extension of the HLLC Scheme to Moving Meshes

In Section 3.2.3 we introduced the HLLC flux into the weak formulation in order to
prevent numerical oscillations around discontinuities. The formulation of the HLLC scheme
discussed in Toro et al. [29, 30] and Batten et al. [3, 5] is, however, only valid for nonmoving
meshes. In this section we will discuss the extension of the HLLC scheme to moving meshes.
This extension is most easily accomplished by considering the structure of the wave pattern
in the Riemann problem which is assumed in the HLLC scheme (see Fig. 2). The HLLC
scheme assumes that we have two averaged intermediate states U ∗

L and U ∗
R in the star region,

which is the region bounded by the waves with the slowest and fastest signal speeds SL and
SR , respectively. The star region is divided into two parts by a contact wave which moves

FIG. 2. Wave pattern used in the definition of the HLLC flux function for an element face moving with
velocity v. Here SL and SR are the fastest left- and right-moving signal velocities. The solution in the star region
U ∗ is divided by a wave with velocity SM .
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with velocity SM . Outside the star region the solution still is at its initial values at time tm ,
which are denoted UL and UR and are equal to the traces U−

h (tm) and U+
h (tm), respectively.

In the time interval [tm, tm + 
t) the solution UHLLC at an element face which moves with
the velocity v then is equal to

UHLLC =




UL ≡ U−
h (tm), if SL > v,

U ∗
L , if SL ≤ v < SM ,

U ∗
R, if SM ≤ v < SR,

UR ≡ U+
h (tm), if SR ≤ v,

(29)

where depending on the grid velocity v we have to consider four different cases. The time
interval 
t is chosen such that there is no interaction with waves coming from other Riemann
problems.

Assume that SL < v, SR > v, and SM ≥ v. Then we can calculate the flux HHLLC(UL , UR)
in the time interval [tm, tm + 
t) by integrating the Euler equations over the control volumes
� DEFC and � EABF, as shown in Fig. 2. Using Gauss’ theorem we obtain for the control
volume � DEFC the relation∫ SL
t

xL

UL dx +
∫ v
t

SL
t
Uh(x, tm + 
t) dx

=
∫ 0

xL

Uh(x, tm) dx +
∫ tm+
t

tm

F̂(Uh(xL , t)) dt −
∫ tm+
t

tm

F̂(U−
h (vt, t)) dt, (30)

and for the control volume � EABF∫ SM 
t

v
t
Uh(x, tm + 
t) dx +

∫ SR
t

SM 
t
Uh(x, tm + 
t) dx +

∫ xR

SR
t
UR dx

=
∫ xR

0
Uh(x, tm) dx +

∫ tm+
t

tm

F̂(U+
h (vt, t)) dt −

∫ tm+
t

tm

F̂(Uh(xR, t)) dt, (31)

with F̂(Uh) = n̄KF̄(Uh). If we introduce now the averaged solutions U ∗
L and U ∗

R , which are
defined as

U ∗
L = 1

(SM − SL )
t

∫ SM 
t

SL
t
Uh(x, tm + 
t) dx,

U ∗
R = 1

(SR − SM )
t

∫ SR
t

SM 
t
Uh(x, tm + 
t) dx,

and use the fact that U±
h is constant along the line x = vt in the Riemann problem, then we

obtain after subtracting (30) from (31) the following expression for the HLLC flux at the
interface in the time interval [tm, tm + 
t):

HHLLC(UL , UR) = 1

2
(F̃(U−

h (vt, t)) + F̃(U+
h (vt, t)))

= 1

2
(F̂(UL ) + F̂(UR) + ((SL − v) + (SM − v))U ∗

L

+ ((SR − v) − (SM − v))U ∗
R − SLUL − SRUR).
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For the other three cases, (SL < v, SR > v, SM ≤ v), (SL < v, SR < v, SM < v), and (SL > v,

SR > v, SM > v), a similar analysis can be made. If we combine the four cases, then we
obtain the following expression for the HLLC flux at a moving interface in the time interval
[tm, tm + 
t):

HHLLC(UL , UR) = 1

2
(F̂(UL ) + F̂(UR) − (|SL − v| − |SM − v|)U ∗

L

+ (|SR − v| − |SM − v|)U ∗
R + |SL − v|UL

− |SR − v|UR − v(UL + UR)). (32)

In order to completely define the HLLC flux we still need to define the star states U ∗
L and

U ∗
R , and the wave speeds SL , SR , and SM . This can be done in various ways, but since

there is no difference between the HLLC flux for moving and nonmoving meshes, we
only state the final results. We will follow the approach of Batten et al. [3], who assumed
that

SM = û∗
L = û∗

R = û∗,

with ûL ,R = n̄K · uL ,R , and with û∗ the normal velocity calculated from the HLL approxi-
mation. This results in the following expression for SM :

SM = �Rû R(SR − û R) − �L ûL (SL − ûL ) + pL − pR

�R(SR − û R) − �L (SL − ûL )
.

The star states are obtained using the Rankine–Hugoniot relations across the waves moving
with the velocities SL and SR ; i.e.,

U ∗
L = SL − ûL

SL − SM
UL + 1

SL − SM




0
(p∗ − pL )n̄K

p∗SM − pL ûL


, (33)

with an identical relation for U ∗
R , only with L replaced with R. The intermediate pressures

are equal to

p∗
L = �L (SL − ûL )(SM − ûL ) + pL ,

p∗
R = �R(SR − û R)(SM − û R) + pR,

but the definition of SM ensures that p∗
L = p∗

R = p∗, as is required for a contact discontinuity.
The wave speeds SL and SR are computed according to Davis [14] as

SL = min(ûL − aL , û R − aR), SR = max(ûL + aL , û R + aR), (34)

with a = √
� p/� the speed of sound. Batten et al. [5] showed that it is better to use wave

velocities based on the Roe averaged velocities, but we did not notice any major difference
with the simpler waves velocities defined in (34) for the simulations discussed in this article.
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3.4.2. Evaluation of Flux Integrals

The flux integrals (23) and (24) are computed by transforming the integrals to the ref-
erence face (−1, 1)3 and reference element K̂, respectively, after which the integrals are
approximated according to product Gauss quadrature rules. For the element face flux in-
tegrals (23), a two-point product Gauss quadrature rule is used for the integration in the
local coordinate directions �1, �2, and �3, and a three-point Gauss quadrature rule is used
for the integration in the local coordinate direction �4. The volume flux integrals (24) are
computed with a three-point product Gauss quadrature rule. In van der Ven and van der
Vegt [34], Corollary 16, it is shown that these quadrature rules are sufficiently accurate
to ensure that the discontinuous Galerkin discretization discussed in this article is second-
order accurate in a suitable Sobolev norm. The product Gauss quadrature rules also evaluate
the flux integrals sufficiently accurately to satisfy the geometric conservation law (GCL).
The GCL, which was originally formulated by Thomas and Lombard [28], requires that a
uniform flow field not be disturbed by the grid motion and that it be an essential condi-
tion in order to obtain at least first-order accuracy in time, as was proven by Guillard and
Farhat [17].

The product Gauss quadrature rules are easy to implement but require 12 flux evaluations
per element face integral and 81 flux evaluations per volume integral. This number can be
slightly reduced using more sophisticated quadrature rules, as described by Stroud [27], but
the number of flux evaluations remains large. In [34] we describe and analyze a technique
to reduce the number of flux evaluations in the flux integration to one while maintaining
the same second-order accuracy as obtained with the product Gauss quadrature rules. The
discussion of this technique is, however, beyond the scope of this article.

3.5. Stabilization Operator

The discontinuous Galerkin finite element method without stabilization operator does not
guarantee monotone solutions around discontinuities and sharp gradients. In these regions
numerical oscillations develop when polynomials of degree one or higher are used. For
the Runge–Kutta discontinuous Galerkin method Cockburn et al. [10] derived a local pro-
jection or slope limiter which guarantees monotone solutions for multidimensional scalar
conservation laws. This approach was a major breakthrough for the numerical solution hy-
perbolic partial differential equations because initially discontinuous Galerkin finite element
discretizations experienced severe stability limitations. The use of a slope limiter in combi-
nation with a DG method results in a robust numerical discretization and has become quite
popular. We have used this technique to compute complex three-dimensional (unsteady)
flows for aerodynamical applications in combination with local mesh refinement [31, 32].
Other applications of DG methods with limiters, including higher order discretizations, can
be found in Cockburn and Shu [11], Cockburn et al. [13], and Kershaw et al. [20].

Despite its robustness the use of a slope limiter has serious disadvantages, since it may
result in an unnecessary reduction in accuracy in smooth parts of the flow field and prevents
convergence to steady state. The accuracy problem has been an important motivation for
Cockburn and Shu to look at total variation bounded (TVB) DG discretizations [9], but these
techniques are not easy to apply in multiple dimensions and contain problem-dependent
constants which are difficult to estimate. Recently, Burbeau et al. [7] proposed limiters
for second- and higher-order-accurate DG methods without problem-dependent constants
which look promising, but they still need further testing on real applications.
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The problems with the convergence to steady state caused by the limiter are more se-
vere and originate from an inconsistency in the combination of a discontinuous Galerkin
discretization and a limiter. Since the limited solution does not satisfy the steady-state
discontinuous Galerkin equations, it is not possible to reduce the residual to machine accu-
racy. Instead, the scheme tries to converge to the unlimited solution, which suffers however
from numerical oscillations, and the limiter must remain active to prevent this. This is
particularly annoying for industrial applications, since it is unclear when to stop the calcu-
lations. Convergence to steady state is also important for unsteady problems. In Section 4
we solve the nonlinear equations for the DG expansions coefficients (26) by introducing a
pseudo-time and marching the solution to steady state in pseudo-time with a FAS multigrid
algorithm.

The problems in obtaining steady-state solutions with a limited DG method are well
known but have received little attention, since most applications of DG methods have been
to unsteady problems in combination with an explicit Runge–Kutta time integration method.
After extensive testing we came to the conclusion that a better alternative is provided by
stabilizing the discontinuous Galerkin method by adding artificial dissipation. This ap-
proach is also followed by Barth [2], Baumann [4], Cockburn and Gremaud [8], and Jaffre
et al. [19] for the discontinuous Galerkin method and is standard in the streamline upwind
Petrov Galerkin (SUPG) and Galerkin least-squares methods. In this section we will discuss
new stabilization operators for the space–time discontinuous Galerkin method and in later
sections we will demonstrate that this technique provides excellent shock capturing and
convergence to steady state in pseudo-time. The stabilization operators use the jump in the
polynomial representation at the element faces in the discontinuous Galerkin discretization
and the element residual. In this way optimal use is made of the information contained
in a DG discretization and we maintain the compact stencil of the discontinuous Galerkin
discretization.

The effectiveness of the stabilization operator D defined in (25) strongly depends on the
artificial viscosity matrix D(Uh |Kn

j
, U ∗

h |Kn
j
) ∈ R

4×4. The definition of the artificial viscosity
matrix is more straightforward when the stabilization operator acts independently in all
computational coordinate directions. This is achieved by introducing the artificial viscosity
matrix D̃∈ R

4×4 into computational space using the relation

D
(
Uh |Kn

j
, U ∗

h |Kn
j

) = RT D̃
(
Uh |Kn

j
, U ∗

h |Kn
j

)
R, (35)

where the matrix R ∈ R
4×4 is defined as

R = 2H−1 grad G K . (36)

The matrix H ∈ R
4×4 is introduced to ensure that both D and D̃ have the same mesh

dependence as a function of hi , and is defined as

H = diag(h1, h2, h3, h4),

with hi ∈ R
+ the leading terms of the expansion of the mapping G K (3) in the computational

coordinates �i (1 ≤ i ≤ 4). The multiplication with the factor two in (36) ensures that for
orthogonal cells the matrix R is the rotation matrix from the computational space to the
physical space. The integrals in the stabilization operator Dnm given by (25) can now be
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further evaluated, resulting in

Dnm
(
Uh |Kn

j
, U ∗

h |Kn
j

) =
∫
Kn

j

∂�n

∂xk
RpkD̃pq

(
Uh |Kn

j
, U ∗

h |Kn
j

)
Rql

∂�m

∂xl
dK

= 4
∫
K̂

(H−1)pnD̃pq
(
Uh |Kn

j
, U ∗

h |Kn
j

)
(H−1)qm |JG K | dK̂

= 4
∣∣Kn

j

∣∣
h2

n


nmD̃nn
(
Uh |Kn

j
, U ∗

h |Kn
j

)
(no summation on n), where we used the relations (grad G K )i j = ∂x j/∂�i and ∂�n/∂�p =
np

and made the assumption that D̃ is constant in each element.
The stabilization operator should act only in areas with discontinuities or when the

mesh resolution is insufficient. This requirement can be directly coupled to the jump in
the solution across element faces and the element residual, respectively, both of which
are readily available in the discontinuous Galerkin discretization. In regions with smooth
solutions these contributions are on the order of the truncation error and will therefore not
reduce the accuracy in these regions. We have tested two models for the artificial coefficients.

Model I. In the artificial viscosity model I, only the jump in the pressure across the
element faces influences the stabilization matrix. This technique works very well in subsonic
and transonic flows with weak shocks. The artificial viscosity matrix is defined as

D̃qq
(
Uh |Kn

j
, U ∗

h |Kn
j

) = C ′�hq∣∣Qn
j

∣∣
6∑

m=1

∣∣p+(x(m)
)− p−(x(m)

)∣∣|Sm |
p+(x(m)

)+ p−(x(m)
) , q = 1, 2, 3,

= 0, otherwise,

with p±(x(m)) = �±(p(x(m))) the pressure at the centers of the faces Sm ⊂Qn
j and � the

trace operator. The scaling factor � is defined as � = |n̄K · (u − v)| + a and is the maximum
of the eigenvalues of the flux Jacobians ∂F̄/∂U at the midpoints x(m) of the faces Sm , with
n̄K the space normal at Qn

j , u and v the fluid and grid velocity, and a = √
� p/� the speed

of sound. The constant C ′ is of order one. Other discontinuity sensors, based for instance
on the density, have also been tested, but the difference with the pressure sensor generally
was very small.

Model II. For problems with stronger discontinuities the artificial viscosity model pro-
posed and analyzed by Jaffre et al. [19] is used. In this model, both the jumps at the element
faces and the element residual are used to define the artificial viscosity; i.e.,

D̃qq
(
Uh |Kn

j
, U ∗

h |Kn
j

) = max
(

C2h2−�
K Rq

(
Uh |Kn

j
, U ∗

h |Kn
j

)
, C1h

3
2
K

)
, q = 1, 2, 3,

= 0, otherwise,

with

R
(
Uh |Kn

j
, U ∗

h |Kn
j

) =
∣∣∣∣∣

3∑
k=0

∂F(Uh)

∂Uh,i

∂Uh,i (G K (0))

∂xk

∣∣∣∣∣+ C0

∣∣U+
h

(
x(7)
)− U−

h

(
x(7)
)∣∣/hK

+
6∑

m=1

1

hK

∣∣n̄T
KF̃
(
U+

h

(
x(m)
))− n̄T

KF̃
(
U−

h

(
x(m)
))∣∣, (37)
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with hK =
√

h2
1 + h2

2 + h2
3 + h2

4 and Uh,i the components of Uh . The coefficients �, C0, C1,
and C2 are positive constants and set equal to C0 = 1.2, C1 = 0.1, C2 = 1.0, and � = 0.1.
For stronger shocks the addition of the quasilinear form of the conservation law in (37),
which is the first contribution on the right-hand side of (37), significantly improves the ro-
bustness of the numerical scheme, since this contribution detects discontinuities very well.
Numerical tests showed that the contributions of the element residual of the quasilinear equa-
tions and the contributions in the jump of the flux at the element faces are equally important.

4. SOLUTION OF THE NONLINEAR DG COEFFICIENT EQUATIONS

4.1. Multigrid Algorithm for Pseudo-Time Integration

The space–time discontinuous Galerkin discretization results in each element in a system
of coupled nonlinear equations for the expansion coefficients Û n . In this section we will
describe an efficient multigrid technique to solve these nonlinear equations. The use of a
multigrid scheme is motivated by the fact that it maintains the local, element-based structure
of the discontinuous Galerkin discretization when a proper relaxation scheme is chosen.
This greatly facilitates the use of a domain decomposition technique on parallel computers,
which are our main target platforms. The multigrid technique has only been discussed
for the linear advection–diffusion equation by Gopalakrishnan and Kanschat [16], which
theoretically analyzed its performance. Until now multigrid techniques have not been used
for DG discretizations of the Euler equations or on locally refined meshes. The development
of an efficient technique has turned out to be nontrivial.

The nonlinear equations of the space–time discontinuous Galerkin discretization (26) are
solved by augmenting them with a pseudo-time derivative; i.e.,

|K j (t
−
n+1)|∂Û

(
Kn

j

)
∂

= − 1


t
L(Û n, Û n−1), (38)

where the right-hand side of (38) is divided by 
t to make it possible to obtain also
steady-state solutions as 
t → ∞, because 1


t L is independent of 
t . The system (38) is
integrated in pseudo-time using an optimized Runge–Kutta scheme in combination with
a FAS multigrid algorithm to accelerate the convergence to steady state. On the coarse
meshes only the equations for element mean are used. Depending on the type of artificial
dissipation, we must, however, modify the Runge–Kutta scheme.

We define the following five-stage semiimplicit Runge–Kutta scheme, with K n =
K j (t

−
n+1), as relaxation operator for the multigrid procedure:

Procedure Sk
I (k,Lk,F k

O , Ŵ k):

1. Initialize the first Runge–Kutta stage: V̂ (0) = Ŵ k .
2. Do for all stages s = 1 to 5:(
I + 	s �̄

|K n|
(|K n|I + D̄k

(
V̂ (s−1)

)))
V̂ (s)

= V̂ (0) + 	s �̄

|K n|
((|K n|I + D̄k

(
V̂ (s−1)

))
V̂ (s−1) − Lk

(
V̂ (s−1), Û k(Kn−1)

)+ F k
O

)
. (39)

3. End do.
4. Update solution: Ŵ k = V̂ (5).

End Procedure Sk
I .
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In this procedure Ŵ k are approximations to the expansion coefficients Û (Kn) at the different
grid levels k, Û k(Kn−1) are the expansion coefficients of the restriction of Uh(Kn−1) to the
grid level k, and F k

O represents the forcing function, which is defined in Procedure FAS.
At the fine grid level k = M , the nonlinear operator LM : R

5×5 × R
5×5 → R

5×5 satisfies
LM = L, with L defined in (27)–(28), and we have Û M , V̂ M , Ŵ M , F̂M

O ∈ R
5×5. At the

coarse grid levels 1 ≤ k < M , the components of the operators Lk : R
5 × R

5 → R
5 are

equal to Lk
i = Li0, and we have V̂ k , Ŵ k , F̂ k

O ∈ R
5. The coefficients Û k ∈ R

5 only consist
of the coefficients of the mean flow field Û 0i and the coefficient �̄ is defined as �̄ = 



t ,
with 
 the time step in the pseudo-time integration. The Runge–Kutta coefficients 	s are
defined as 	1 = 0.0791451, 	2 = 0.163551, 	3 = 0.283663, 	4 = 0.5, and 	5 = 1.0 and
are optimized with a searching technique to improve the stability and smoothing properties
of the Runge–Kutta scheme. The matrix D̄M ∈ R

5×5 is defined as

D̄M =
(

0 0
0 D

)

at the fine grid level, with the dissipation matrix D ∈ R
4×4 given by (25), and D̄k is zero

at the coarse grid levels. Note, both dissipation operators discussed in Section 3.5 result in
a diagonal matrix; hence the implicit treatment of this contribution is straightforward. The
matrix I ∈ R

5×5 represents the identity matrix.
The Runge–Kutta scheme (39) is obtained from a second-order-accurate five-stage

Runge–Kutta method,

V̂ (s) = V̂ (0) − 	s �̄

|K n|L
k
(
V̂ (s−1), Û k(Kn−1)

)
, for s = 1, . . . , 5, (40)

by treating V̂ in Lk(V̂ , Û k(Kn−1)) semiimplicitly. This is accomplished by approximating
(Ā + D̄)V̂ as (|K n|I + D̄)V̂ (s) + (Ā − |K n|I )V̂ (s−1). Here Ā is the coefficient matrix mul-
tiplying V̂ in (27) and (28). The contribution 	s �̄(|K n|I + D̄)V̂ (s−1)/|K n| then is added and
subtracted to the right-hand side of (40) to restore the operator Lk . This makes it possible
to have a residual Lk(Û n, Û n−1) ≈ 0 when the solution converges to a steady state, which
facilitates the definition of the multigrid algorithm.

The semiimplicit Runge–Kutta scheme is necessary because the pseudo-time integra-
tion would otherwise become unstable for values of �̄ on the order of one. The use of a
semiimplicit Runge–Kutta scheme was proposed by Melson et al. [24] for time-accurate
calculations with multigrid acceleration using a Jameson-type finite volume discretization
of the compressible Navier–Stokes equations. In Section 4.2 we analyze this procedure and
show that for small values of �̄, it also greatly enhances the stability of the pseudo-time-
integration method for the space–time discontinuous Galerkin discretization.

The multigrid procedure also requires the definition of the coarse grid meshes and the
restriction and prolongation operator. The unadapted mesh is generated such that it has a
sufficient number of coarse grid levels. For most calculations at least three levels are used.
In general the mesh is also locally refined, and starting at the leaves of the refinement tree,
we traverse the tree backward until a sufficiently large number of cells is merged into coarse
grid cells. The ratio of the number of cells between two grid levels is approximately eight
in three dimensions. In Fig. 3 an example of this process is given. This process results in a
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FIG. 3. Coarsening based on refinement tree. The numbers at the nodes of the tree refer to the number of
leaves in the subtree. (Dashed lines) Where the tree is pruned. The fine grid cells and the resulting coarse grid
cells are shown to the right.

number of tessellations T n
h,k , 1 ≤ k ≤ M , for each grid level, which are defined as

T n
h,k :=

{
Kn

j,k

∣∣∣∣∣Kn
j,k =

⋃
j ′∈I j,k

Kn
j ′ ,Kn

j ′ ∈ T n
h

}
,

with I j,k the indices of the elements Kn
j ′ which agglomerate into the coarse grid element

Kn
j,k . Note, at the fine grid level k = M we have T n

h,M = T n
h . An example of three multigrid

levels in a locally refined mesh is given in Fig. 4.
We also have to correct for the fact that the agglomerated coarse grid cells are not

necessarily hexahedronal elements. This does not give serious problems, since at the coarse
grid levels we only use equations for the element mean. These equations are identical to
a first-order-accurate finite volume discretization for which it is straightforward to obtain
a discretization on agglomerated elements. This is considerably more complicated for a
second- or higher-order-accurate discontinuous Galerkin discretization, which also uses
the equations for the flow field fluctuations, and is one of the main reasons for only using
the equations for the element mean on the coarse grid levels.

For the discretization at the coarse grid levels we introduce the approximation spaces
Vh,k , which are defined as

Vh,k
(
T n

h,k

)
:=
{{

Uh |Uh |K = Ū (K (t−
n+1)), ∀K ∈ T n

h,k

}
, if 1 ≤ k < M,

V 1
(
T n

h

)
, if k = M.

The restriction operator I k−1
k : Vh,k(T n

h,k) → Vh,k−1(T n
h,k−1) is a volume-weighted average

and is defined as

I k−1
k Uh |Kn

j
=
∑

j ′∈I j,k
Û 0i
(
Kn

j ′
)∣∣Kn

j ′
∣∣∑

j ′∈I j,k

∣∣Kn
j ′
∣∣ , (41)
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FIG. 4. Multigrid levels in an adapted mesh about the NACA 0012 airfoil.

with Kn
j ∈ T n

h,k . The prolongation operator I k
k−1 : Vh,k−1(T n

h,k−1) → Vh,k(T n
h,k) is a pure

injection and defined as

I k
k−1Uh |Kn

j,k
= Ū (K j,k(t−

n+1)) (42)

for all fine grid elements K j ∈ T n
h,k , which agglomerate into the coarse grid element Kn

j,k .
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We can now define a FAS multigrid algorithm for the space–time discontinuous Galerkin
discretization on locally refined meshes:

Procedure FAS(k,Lk,F k
O , Ŵ k ):

1. Do m1 Runge–Kutta steps Sk(k,Lk,F k
O , Ŵ k) at grid level k.

2. Compute forcing function:

Fk−1
O = Lk−1

(
I k−1
k Ŵ k, I k−1

k Û k(Kn−1)
)+ I k−1

k

(
F k

O − Lk(Ŵ k, Û k(Kn−1))
)
,

with FM
O = 0.

3. If k > 0 do Procedure FAS(k − 1,Lk−1,F k−1
O , Ŵ k−1).

4. Update element mean solution at grid level k: Ŵ k
i0 = Ŵ k

i0 + I k
k−1(Ŵ k−1

i0 − I k−1
k Ŵ k

i0).
5. Do m2 Runge–Kutta steps Sk(k,Lk,F k

O , Ŵ k) at level k.

End Procedure FAS.

In the definition of the Procedure FAS we used (17)–(18), which allows us to apply the
restriction and prolongation operator directly to the coefficients Û without first projecting
Uh to the basis functions �m . The Procedure FAS uses a V-cycle multigrid strategy. Other
cycling strategies, such as the W-cycle, can be obtained with minor changes to the Procedure
FAS. The present multigrid algorithm makes rather crude assumptions at the coarse grid
levels but has a good performance in practice. An example is given in Fig. 5 for calculations
of the transonic flow about a NACA 0012 airfoil on a locally refined mesh. This figure
shows that after each adaptation step, which results in the peaks in the residual, the residual
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FIG. 5. Convergence rate comparison of the residual for the element mean and fluctuating DG coefficient
equations using single and multigrid computations (dark lines) on a twice-adapted mesh of a NACA 0012 airfoil.
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is efficiently reduced by the multigrid procedure, both for the equations of the element
mean and for the fluctuations. We have extensively tested several other multigrid strategies,
including solving the equations for the flow field fluctuations Û mi , m ≥ 1 on coarse meshes
and more elaborate restriction and prolongation operators. Although some of these methods
were promising in a two-level smoothing analysis and their theoretical performance was
verified in calculations on simple model problems, none of these techniques came close to
the performance of the multigrid algorithm for the solution of the Euler equations discussed
in this section.

4.2. Stability Analysis of Pseudo-Time Integration

In this section we investigate the stability of the pseudo-time-integration method dis-
cussed in Section 4.1. As a model problem we use the linear advection equation ut + aux =
0, with a a positive constant. For this equation a relatively simple discretization is obtained,
which is summarized in the Appendix. The Runge–Kutta scheme (39) is used for the
pseudo-time integration.

If we assume that the time step, element size, and velocity remain constant, i.e., 
t = 
tn ,

x = 
xn+1

j = 
xn
j , and s = sn

j− 1
2

= sn
j+ 1

2
for all j and n, and if we set the artificial

viscosity coefficients equal to zero, then the operator L for the linear advection equation
defined in the Appendix can be expressed as

L(Û n, Û n−1) = AÛ
(
Kn

j

)− BÛ
(
Kn

j−1

)− CÛ
(
Kn−1

j

)
, (43)

with the matrices A,B, C ∈ R
3×3 defined as

A =




1 + 
 
 −


−
 1
3 + 
 


−2 − 
 −
 2 + 4
3



, B =





 
 −


−
 −
 


−
 −
 4
3



, C =




1 0 0

0 1
3 0

−2 0 0


,

with 
 = 
t(a − s)/
x and s ≤ a. Consider now the spatial Fourier mode

Û
(
Kn

j

) = eı� j Û F ,

with � ∈ [0, 2�) and ı = √−1. Since the stability of the pseudo-time integration is de-
termined by the transients we only consider the homogeneous part of the equation for the
Fourier coefficient Û F ; i.e.,

dÛ F

d
= − 1


t
P(�)Û F , (44)

with P(�) = A − e−ı�B. The matrix P ∈ R
3×3 is nonsingular and we can write P as P =

QM Q−1, with Q the matrix of right eigenvectors and M the diagonal matrix with the
eigenvalues �m(�) (m = 0, 1, 2) of P(�). If we introduce a new vector V̂ F = Q−1Û F , then
(44) becomes a system of uncoupled ordinary differential equations:

dV̂ F
m

d
= −�m(�)


t
V̂ F

m , for m = 0, 1, 2.
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This system of ordinary differential equations is solved with the semiimplicit Runge–
Kutta scheme (39), which has an amplification factor G(z), with z ∈ C. The pseudo-time-
integration method is stable if the amplification factor G satisfies the condition |G(zm(�))| ≤
1, for m = 0, 1, 2 and � ∈ [0, 2�), with zm(�) defined as zm(�) = −



t �m(�). The stability
is analyzed for different values of the physical and pseudo-time step CFL numbers (defined
as CFL
t = a
t/
x and CFL
 = a
/
x , respectively), and the ratio s/a. In Fig. 6
contour values of the stability domain |G(z)| ≤ 1 for the five-stage semiimplicit Runge–
Kutta scheme (39) with optimized coefficients are shown for the physical CFL numbers
CFL
t = 1 and 100. Also shown are the locus of the eigenvalues zm(�), � ∈ [0, 2�), which
must be inside the stability region to ensure the stability of the pseudo-time integration. For
CFL
t = 1 the Runge–Kutta scheme is stable for CFL
 ≤ 1.94, and for CFL
t = 100
the pseudo-time-step CFL number must be less than CFL
 ≤ 1.85, which is unchanged
for larger values of CFL
t . The large stability domain and excellent smoothing properties
of the semiimplicit Runge–Kutta method for small values of the physical-time-step CFL
number is important for time-accurate simulations. In Fig. 7 the effect of the semiimplicit
treatment of V̂ in (39) is shown for CFL
t = 1. For small physical-time-step CFL numbers
the stabilizing effect of this technique is very large and the pseudo-time-step CFL number
must be reduced to 1.08 to ensure stability when the semiimplicit technique is not used. For
physical CFL numbers larger than 100 the effect of the semiimplicit Runge–Kutta scheme is,
however, negligible. The effect of using optimized coefficients in the Runge–Kutta scheme
(39) is also large, as can be seen in Fig. 7, where the stability contours for the semiimplicit
Runge–Kutta scheme with coefficients 	s = 1

4 , 1
6 , 3

8 , 1
2 , 1 for the stages s = 1, . . . , 5 are

shown. These are the coefficients for the Jameson Runge–Kutta scheme, which is a popu-
lar Runge–Kutta method in computational fluid dynamics and also is frequently used as a
smoother in multigrid algorithms. For this Runge–Kutta scheme the pseudo-time CFL num-
ber must be reduced to CFL
 ≤ 0.88 when the physical CFL number is equal to CFL
t = 1.
When the physical CFL number is equal to CFL
t = 100, the pseudo-time CFL number
must be reduced to CFL
 ≤ 0.95 for the Jameson Runge–Kutta scheme. The effect of
grid velocity is stabilizing if the grid velocity is in the range 0 ≤ s ≤ a. This is a direct
consequence of the relation 
 = CFL
t (1 − s/a). When the grid velocity is in this range, it
reduces the effective physical-time-step CFL number and since the pseudo-time integration
has a larger stability domain for smaller values of CFL
t , this improves stability.

5. MESH ADAPTATION

In order to improve the accuracy of the discontinuous Galerkin discretization the compu-
tational mesh is adapted to provide more resolution in important flow structures. The mesh
adaptation procedure is based on anisotropic refinement and coarsening of the mesh by
subdividing and merging elements, independently in each of the local coordinate directions
�i (1 ≤ i ≤ 4), of the reference element. The data structures and searching techniques for
local mesh refinement and coarsening, which are suitable for the space–time discontinuous
Galerkin finite element discretization, are essentially the same as that discussed in van der
Vegt and van der Ven [31]. The mesh adaptation is controlled with a sensor function, which
is based on the following quantities:

• shock sensor, which measures differences in flow quantities and total pressure loss
across cell faces.
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FIG. 6. Locus of the eigenvalues zm(�), � ∈ [0, 2�) (dots), of the DG discretization of ut + aux = 0 and the
stability domain of the five-stage semiimplicit Runge–Kutta method with optimized coefficients. CFL
t = 1.0,
CFL
 = 6.0 (top); CFL
t = 100.0, CFL
 = 2.2 (bottom); no grid velocity.
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FIG. 7. Locus of the eigenvalues zm(�), � ∈ [0, 2�) (dots), of the DG discretization of ut + aux = 0 and
the stability domain of the explicit five-stage Runge–Kutta method (40) with optimized coefficients (top) and the
five-stage semiimplicit Jameson Runge–Kutta scheme (bottom). CFL
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 = 6.0. No grid velocity.



574 VAN DER VEGT AND VAN DER VEN

• vorticity sensor, which measures the vorticity within an element.
• grid sensor, which either measures the anisotropy of the mesh or the mesh width of a

cell.

We do not control the adaptation procedure using a posteriori error estimates, since this
technique presently is not sufficiently well developed for the Euler equations. After the
mesh adaptation, the coupling coefficients (22), which link the old and new space–time
slabs, have to be computed in order to preserve time accuracy. In the next two sections we
will discuss the evaluation of this contribution for element refinement and coarsening.

5.1. Space–Time Slab Coupling for Element Refinement

Given a refinement between two space–time slabs, where an element is divided into half
in one of the computational coordinate directions, let Kn−1

j be an element in the space–
time slab T n−1

h and Kn
j0 , Kn

j1 be two space–time elements in T n
h such that K n

j := K̄ j (t−
n ) =

K̄ j0 (t+
n ) ∪ K̄ j1 (t+

n ). The solution Uh(x̄, t−
n ) in element Kn−1

j is approximated as

Uh, j (x̄, t−
n ) =

4∑
m=0

Û m
(
Kn−1

j

)
�m, j (x̄, t−

n ),

where the element index j is added to Uh and the basis functions �m to indicate to which
element they belong. The space–time slab coupling coefficients (22) for the elements Kn

jk ,
k = 0 or 1, can now be evaluated as

Bl
(
U+

h |K jk (t+
n )

) =
∫

K jk (t+
n )

Uh, j (x̄, t−
n )� l, jk (x̄, t+

n ) d K

=
3∑

m=0

Û m
(
Kn−1

j

)∫
K jk (t+

n )
�m, j (x̄, t−

n )� l, jk (x̄, t+
n ) d K , l = 0, . . . , 4. (45)

The summation over the DG expansion coefficients is from zero to three, since �4, j (x̄, t−
n ) =

0 (cf. (5)). The evaluation of the integrals on the right-hand side of (45) requires an explicit
expression for �m, j (x̄, t−

n ) in the element K jk . Since the basis functions �m are defined
in the reference element K̂ using the basis functions �̂ m , we must link �m, j (x̄, t−

n ) to its
representation in the reference element. Introduce the mappings Lk

i , with 1 ≤ i ≤ 3 and
k = 0 or 1, which are defined as

Lk
i : K̂ → K̂′ : �m �→

{
1
2 �m − 1

2 + k, if i = m,

�m, if i �= m,

with

K̂′ = (−1, 1) × · · · × (−1 + k, k) × · · · × (−1, 1).

i th entry

Here the subscript i denotes the coordinate direction in which the element is refined. Note
that G K jk

and G K j � Lk
i are identical isoparametric mappings ofK jk . We can use this property

to relate the basis function in the element K j to the basis functions in its children K j0 and
K j1 . The basis functions �m, j , restricted to K j0 and K j1 in (45), transform to

�m, j = �̂ m � G−1
K j

= �̂ m � Lk
i � G−1

K jk
=
{

1
2 �m, jk − 1

2 + k, if i = m,

�m, jk , if i �= m,
(46)
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and we can use (46) to define the basis functions �m, j in the elements K jk . If we introduce
(46) into (45) and transform back to the reference element K̂ , then we obtain simple ex-
pressions for the element integrals, which can be evaluated with a product Gauss quadrature
rule with three points in each coordinate direction.

5.2. Space–Time Slab Coupling for Element Coarsening

Given a derefinement between two space–time slabs, let Kn−1
j0 and Kn−1

j1 be two elements
in the space–time slab T n−1

h and Kn
j ∈ T n

h be the space–time element such that K n
j :=

K̄ j (t+
n ) = K̄ j0 (t−

n ) ∪ K̄ j1 (t−
n ). The integral for the coupling coefficients (22) then can be

evaluated as

Bl
(
U+

h |K (t+
n )

) =
∫

K j0 (t−
n )

Uh, j0 (x̄, t−
n )� l, j (x̄, t+

n ) d K +
∫

K j1 (t−
n )

Uh, j1 (x̄, t−
n )� l, j (x̄, t+

n ) d K

=
3∑

m=0

(
Ûm
(
Kn−1

j0

) ∫
K j0 (t−

n )
�m, j (x̄, t−

n )� l, j (x̄, t+
n ) d K

+ Ûm
(
Kn−1

j1

) ∫
K j1 (t−

n )
�m, j (x̄, t−

n )� l, j (x̄, t+
n ) d K

)
, (47)

with �m, j restricted to K j0 and K j1 given by (46). After transformation to the reference
element it is straightforward to calculate the integrals in (47) with a product Gauss quadrature
rule with three points in each coordinate direction.

6. DISCUSSION AND RESULTS

The space–time discontinuous Galerkin finite element method has been tested on a num-
ber of problems with increasing complexity. In this section we discuss results of simulations
aimed at verifying and validating the algorithm. In [34] we present three-dimensional simu-
lations, including a deforming wing, which demonstrate the applicability of the space–time
DG method to unsteady aerodynamics.

6.1. Sod’s Shock Tube Problem

Sod’s problem is one of the classical shock tube problems (see Toro [30]). Its solution
consists of a left-moving rarefaction wave and a right-moving contact discontinuity and
shock. Two simulations have been performed, one with and one without mesh adaptation.
Both simulations start on a uniform mesh with 100 cells in space. The time step is chosen
such that the physical CFL number CFL
t is less than or equal to 0.9. For the simulation with
mesh adaptation, in the first time step two refinements have been carried out, resulting in 21
extra cells. The minimum mesh width is now one-quarter of the mesh width of the original
mesh. The mesh adaptation on the initial solution is crucial because the error generated in
the first time step cannot be recovered with adaptation during the simulation and a result
similar to the uniform mesh solution would be obtained. In the subsequent time steps as
many cells were added as removed, so the total number of cells remained constant in time.
The maximum number of refinement levels has been restricted to one, which implies that no
new cells with mesh widths less than half the mesh width of the original mesh are created.
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FIG. 8. Space–time mesh for the adaptive solution of Sod’s shock tube problem.

The adapted space–time mesh is shown in Fig. 8. The space–time mesh clearly shows
that the structure of the solution and the adaptation based on coarsening and refinement of
elements follows the discontinuities without smearing. The flow solutions on the uniform
and adapted mesh at t = 0.2531 are shown in Fig. 9. Clearly, the solution on the adapted
mesh compares better with the exact solution. The flow solutions for Sod’s problem have
been obtained with dissipation model II, which results in nearly monotone solutions around
the discontinuities. For all other subsonic and transonic problems the simpler dissipation
model I is sufficient.

6.2. Accuracy Study of the Discontinuous Galerkin Discretization

The local elementwise discretization obtained with discontinuous Galerkin methods com-
bines well with local mesh refinement and the discretization does not strongly depend
on the mesh smoothness. Whether the DG method maintains its accuracy on nonsmooth
meshes resulting from h-refinement must, however, be verified. In order to verify this an
accuracy study was conducted using different meshes and comparing the numerical solu-
tion with the exact solution. For this purpose the subsonic two-dimensional flow through
a channel with a sin3 bump is simulated on a sequence of meshes with 800, 3200, and
12800 elements. The coarsest mesh is shown in Fig. 10. At the inflow boundary total
pressure, total temperature, and the velocity direction (normal to the inflow plane) are
prescribed. At the outflow boundary the free-stream pressure is prescribed. Since the en-
tropy p/�� should be conserved in subsonic isentropic flow, the L2-norm of the difference
between the computed entropy and the free-stream value is taken as a measure for the
discretization error. In Fig. 11 the L2-norm of the error is plotted for uniformly refined
meshes. The L2-error is proportional with h5/2, which is better than the theoretical results
presented by Cockburn [12] for the linear advection equation. This can be attributed to the
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FIG. 9. Results of Sod’s shock tube problem at t = 0.2531 on a uniform (top) and adapted (bottom) mesh.
Computed results plotted as circles; exact solution plotted as lines.

fact that we use the data in the element center at t−
n+1, which can be shown with a simple

wave analysis for the linear advection equation to be O(h) more accurate than the data at
the element faces.

Each of the three meshes is also locally refined in two steps in order to test the accuracy
of the method on nonsmooth meshes with hanging nodes. At each adaptation step, the mesh
size is increased by 40%. Since the mesh adaptation parameters are the same for all three
grids, the fine-to-coarse meshes have the following property: for an arbitrary region of the
mesh, the average mesh width is halved with respect to the average mesh width in the next
coarser mesh for the same region. Hence the series is suited for a grid convergence study to
obtain the discretization error of the DG scheme on hanging nodes. A survey of the number
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FIG.10. Originalandone-time-adaptedmeshfor converging –divergingchannel.of mesh points is given in Table I. In the adaptation the correct geometry of the bump ispreserved. A view of the one-time-adapted mesh, which initially had 800 mesh points, isshown in Fig. 10. TheL2-norm of the error on the adapted meshes is shown in Fig. 11,which clearly demonstrates that theL2-error on locally refined meshes in the discontinousGalerkin discretization has the same mesh dependenceh5/2

as on the uniformly refined
meshes, despite the fact that the adapted mesh contains hanging nodes and is nonsmooth.6.3. OscillatingNACA 0010 Airfoil in Transonic FlowThe performance of the space–time discretization and mesh adaptation algorithm on

unsteady transonicflowswasinvestigatedwiththesimulationofthe flo w

field about anoscillating NACA 0010 airfoil. The free-stream Mach number is 0.8, the pitching angle
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TABLE I

Number of Mesh Points in Uniformly and Adaptively

Refined Meshes

Coarse grid Medium grid Fine grid

Original 800 3200 12800
One adaptation 1120 4480 17920
Two adaptations 1568 6272 25088

range is between −0.5 and 4.5 degrees, and the oscillation period is T = 20 (normalized
with L/a∞, where L is the chord length and a∞ is the free-stream speed of sound), which
results in a circular frequency � = �/10. The flow field is computed both on a fine mesh with
32,768 elements and on an adapted mesh, which has approximately 9400 elements during
the simulation. During each time step the coarse mesh is adapted, with first coarsening
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FIG. 12. Lift and drag coefficient on oscillating NACA 0012 airfoil (M∞ = 0.8, � = �/10).
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FIG. 15.Adapted mesh around oscillating NACA0012 airfoil, contours of density, and pressure coefÞcient

Cpon the airfoil surface for	�3�77�(pitching upward) and	�4�0�(pitching downward) (M��0�8,����10).Figures 13 to 15 also show that the mesh adaptation does not negatively in

ßuence the

time accuracy and is very efÞcient in capturing theßow discontinuities, also for the weak

shock at the lower side of the wing, which periodically disappears.7. CONCLUDING REMARKSIn this article we have presented a new spaceÐtime discontinuous GalerkinÞnite ele-ment method for the time-accurate solution of inviscid compressibleßows on dynamic,
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hexahedron-type meshes. The accuracy is improved using local mesh refinement and we
have presented an efficient pseudo-time-integration technique with multigrid convergence
acceleration to solve the nonlinear equations for the expansion coefficients in the DG dis-
cretization. The space–time DG method has been demonstrated to combine well with local
mesh refinement in various simulations and maintains accuracy on nonsmooth meshes.
This makes the space–time DG method an interesting technique for complex aerodynamic
and aeroelastic problems. In a separate article [34], we address the issue of improving
the computational efficiency of the space–time discontinuous Galerkin discretization and
demonstrate the ability of the DG method when used in three-dimensional unsteady flows.

APPENDIX

Discontinuous Galerkin Discretization for Linear Advection Equation

In this appendix we summarize the space–time discontinuous Galerkin finite element
discretization for the linear advection equation

∂u

∂t
+ a

∂u

∂x
= 0,

with a > 0. This results in a relatively simple linear system, which is useful for analyzing
the properties of the numerical discretization (see for instance Section 4.2). The space–time
discontinuous Galerkin discretization for the linear advection equation using a mesh with
grid velocities s j ≤ a, j = 1, . . . N , with N the number of mesh points, can be represented
in matrix form as

AÛ
(
Kn

j

)− BÛ
(
Kn

j−1

) = CÛ
(
Kn−1

j

)
,

with

A =





xn+1
j + cn

j+ 1
2

cn
j+ 1

2
−cn

j+ 1
2

2a1 +cn
j+ 1

2
−2a
tn

1
3 a2 +cn

j+ 1
2
+ d11 −2a1 − cn

j+ 1
2
+ 2a
tn

−
xn
j − 
xn+1

j − cn
j+ 1

2
−cn

j+ 1
2

2
3 a3 + 4

3 cn
j+ 1

2
+ d22


,

B =




cn
j− 1

2
cn

j− 1
2

−cn
j− 1

2

−cn
j− 1

2
−cn

j− 1
2

cn
j− 1

2

−cn
j− 1

2
−cn

j− 1
2

4
3 cn

j− 1
2


, C =





xn
j 0 0

0 1
3
xn

j 0

−2
xn
j 0 0


,

with 
xn
j = xn

j+1 − xn
j , x̄ n

j = 1
2 (xn

j + xn
j+1), a1 = x̄ n+1

j − x̄ n
j , a2 = 2
xn+1

j − 
xn
j , a3 =

2
xn
j + 
xn+1

j , cn
j± 1

2
= 
tn(a − s j± 1

2
), and sn

j+ 1
2

= (xn+1
j+1 − xn

j+1)/
tn . Here xn
j and xn

j+1

denote the beginning and end points of the element at time tn , respectively. The terms d11

and d22 are determined by the artificial dissipation operator.
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